The Cisco TelePresence Solution

Cisco TelePresence solution was officially released in December 2006, providing the first true replacement for face-to-face meetings. Prior to its release, a number of telepresence systems, from numerous vendors, were available on the market; however, their adoption was limited to a small number of customers, with just a few systems each. These systems required overlay networks and focused on white-glove service for executive users. Cisco focused on providing an exceptional experience but also realized that scheduling and ease of use was the key to providing a solution that would be deployed on existing IP networks and used by all employees. For years the video conferencing industry struggled to gain mass adoption and acceptable utilization rates, and in many cases the issue was related to ease of use and system reliability.
Add a note hereEarly Telepresence vendors offered systems providing a good overall experience while addressing reliability issues found in existing video conferencing systems. Unfortunately, these offerings were based on managed service models requiring dedicated networks, and in many cases, custom rooms to house Telepresence endpoints. These systems were not only expensive but also carried a high monthly cost associated with the dedicated bandwidth and managed service fees. In some cases, solutions required an operator to do everything from starting the meeting to enabling data sharing. This model provided a high-end niche Telepresence market but did not allow Telepresence to reach its full potential. For Telepresence to realize its full potential, it needed to extend past the boardroom and into the mainstream.
Cisco focused on delivering a Telepresence solution that provided an immersive true in-person experience, used by all employees, scheduled by the employees, providing tools commonly used in face-to-face meetings, and, most important, run over existing IP networks. At the time of its release, Cisco TelePresence was the only Telepresence system on the market that did not require a dedicated network.
Instead of providing dedicated bandwidth that couldn’t be used by other applications when TelePresence wasn’t being used, Cisco focused on converged IP networks. This allowed enterprise customers to deploy Cisco TelePresence over their existing infrastructure, realizing the upside and long-term value of a converged IP network. However, in some cases customer networks were not ready for an application such as TelePresence. This required some enterprise customers to temporarily deploy Cisco TelePresence over a parallel network until changes were made enabling the TelePresence system to be moved to the customers’ converged IP network.
The initial Cisco TelePresence product release consisted of two TelePresence systems:
§  A conference room-based TelePresence system (CTS-3000) supporting up to six participants at each location
§  A small meeting room system (CTS-1000) supporting up to two participants at each location
The solution also included a middleware scheduling platform—Cisco TelePresence Manager (CTS-Manager)—providing integration with Microsoft Exchange and a simple dialing interface known as One Button to Push. The initial launch of Cisco TelePresence was an immediate success, with most systems deployed for use by CXO level executives. However, it quickly became evident that additional products and functionality were required to meet customer needs.
Shortly after its initial release, additional products and functionality were introduced. Multipoint support was added, enabling meetings with three or more TelePresence systems. Additionally, two new TelePresence systems were announced in early 2008:

§  <The CTS-3200, supporting up to 18 participants for large meeting rooms, was delivered in mid-2008.
§  The CTS-500, supporting a single user for the executive or home office, was delivered shortly after the CTS-3200.
With the addition of these two new systems, Cisco TelePresence broadened its market at the high end, with the CTS-3200, while allowing greater system access to the masses with the CTS-500. Figure 1 illustrates the components of the Cisco TelePresence solution.




Figure 1: Cisco TelePresence

Along with all product and feature enhancements, a Cisco TelePresence Inter-Company offering was announced in late 2007, expanding the reach and extending the relevance of Cisco TelePresence. The addition of Inter-Company allowed customers to extend the benefits of Cisco TelePresence beyond their own enterprises. Enterprises now have the capability to meet virtually with any partner or customer at any time, saving money and improving productivity.
With the expansion of the Cisco TelePresence portfolio and the addition of Inter-Company, Cisco TelePresence adoption continues to grow at an amazing rate.

How Is TelePresence Different Than Video Conferencing?



Both video conferencing and telepresence applications are designed to provide virtual meetings. However, there are fundamental differences in the overall technology and meeting experience delivered by each application. As mentioned in the preceding sections, the lines between video conferencing and telepresence have been blurred as the market focus on telepresence has intensified. Many vendors are now categorizing any video conferencing unit that supports high-definition video as a telepresence product.


Some argue that a high-definition video conferencing system can be made to produce a telepresence experience, and in fact some video conferencing vendors are utilizing existing high-definition codecs in their telepresence systems today. However, telepresence is a set of technologies, including video and audio, that provides an experience enabling all users to feel as if they are in the same room, an experience that not all high-definition video conferencing systems truly provide.


A number of distinctions are often made between the two technologies. The following three guiding principals for Cisco TelePresence are used to show the differences between the two technologies:


Quality
Few will debate the quality of experience found in Cisco TelePresence systems. Cisco TelePresence systems are designed with every detail in mind, from the video and audio quality, to the furniture included in some larger Telepresence systems. High-quality video is required to produce an “in-person” experience. Cisco TelePresence systems use specialized cameras that are strategically placed above system displays, providing optimal eye contact for all meeting participants. Cisco TelePresence cameras are also fixed focus and tuned for the room environment, allowing consistent images across all sites. Cisco TelePresence systems also provide large integrated displays providing vivid, lifelike images in high-definition quality. Audio systems provide crisp, lifelike audio, using wideband codecs. Audio systems are specially engineered for the TelePresence system, room dimensions, and table layouts, providing multichannel audio tuned for voice frequencies and eliminating off-screen audio sources. Microphones and speakers are strategically placed, providing immersive audio that emanates from the speakers location in the room. Cisco TelePresence systems also provide room requirements outlining lighting, acoustic requirements, and in some cases integrated furniture. All these factors contribute to the quality level that is required for any Cisco TelePresence system. Telepresence is the sum of all these attributes. If any one of these areas is overlooked, the result will not be a true telepresence experience.


Today’s video conferencing systems have the capability to provide good audio and video quality with many systems supporting high-definition video and wide-band audio. However, video conferencing systems were built for flexibility and adaptability. Video conferencing systems are shipped with pan-tilt-zoom cameras that are designed to capture large rooms with long tables accommodating all participants on a single display. Most video conferencing systems ship with displays that range in size and can even be replaced with larger displays or projector systems for large rooms. Advanced audio codecs have been developed by a few of the video conferencing vendors that provide excellent audio quality. Most video conferencing systems are shipped with tabletop microphones that are often deployed in smaller conference rooms and routinely replaced by in-house microphone systems for large meeting rooms. Video conferencing systems are deployed in many different room environments from the high-end executive board rooms to the small meeting room with a video conferencing system on a cart. Unfortunately, video conferencing units on carts far outnumber high-end video conferencing rooms, resulting in highly variable, inconsistent experiences from one room to the other.


Simplicity
The complexity and inconsistency of the various user interface provided by existing video conferencing systems is one of the biggest reasons for the low utilization rates found in most video conference deployments. Video conferencing systems ship with remote controls that are used to initiate meetings, focus cameras, share documents, and more. These remote controls have frustrated users for years and are often replaced with customized touch panels. However, customized touch panels are usually only deployed in high-end rooms, whereas smaller rooms use vendor-supplied remote controls, making it difficult for the average user to navigate different and complicated interfaces. Many companies find it necessary to employ a dedicated video conference staff tasked with scheduling, initiating, and managing meetings to address the complexity found in video conferencing systems.


Telepresence systems are designed with simplified user interfaces and in some cases, such as with the Cisco TelePresence system, a simple (IP Phone) interface that is used for all systems. As mentioned earlier, some vendors have developed new telepresence systems while at the same time branding existing high-definition video conferencing systems as telepresence systems. This will continue to provide challenges for users that experience the simplified user interface of a telepresence system one day and a complicated remote control found in smaller room the next. For telepresence to reach its full potential, the user interface must continue to be simplified and remain consistent, ensuring any user is comfortable running a telepresence meeting.


Telepresence systems are often described as inflexible and lacking many features found in video conferencing systems. This is by design, removing unnecessary features to simplify the overall user experience. The more features added into a system, the more complicated the system becomes. Early telepresence systems provided only the basic features required for business meetings, but as customer adoption grew, the demand for more features followed. This provides a challenge for all telepresence vendors; how to keep systems simple and intuitive while adding new and advanced feature sets. In reality, many features that are never used, or are only used by a small number of customers, are implemented across all technologies, ultimately complicating implementations and usability. The “less is more model” has proved successful for Cisco TelePresence to date, but time will tell how long this philosophy will last in the face of customer demand for more and more features.


Reliability
System reliability has been a perceived issue with video conferencing systems for years. In reality, the video conferencing systems themselves are fairly reliable. However, outside factors have plagued them for years. The complexity of the video conferencing user interface played a big part in the perceived reliability issue. Users often walked into rooms, misdialed or pressed the wrong button on the custom touch screen panel, the call failed to connect, and the user assumed there was an issue with the system. It was just as common for a user to walk into a room and try to use the system only to find out the display was powered off or had been disconnected from the video codec. This was often the case in the Cisco internal video conferencing deployment. Displays were often used for different purposes, or someone needed to use the network jack and reconnected the system to the wrong jack. Whatever the reason, users quickly abandon the use of video conferencing systems when they encounter issues initiating calls.


Cisco TelePresence systems have made it a priority to provide systems that work every time. As described previously, Cisco TelePresence systems have simplified the dialing interface to address issues with user error and integrated all components to eliminate these types of avoidable issues. System displays, and even lighting on some systems, are centrally controlled by the TelePresence system, ensuring that every time a user pushes the button to connect the TelePresence call, it works. Single screen TelePresence systems are often mounted to walls with network and power jacks located behind the system, so users don’t have the ability to unplug power or network connections. The importance of integrated system displays is often overlooked for single screen systems. Something as small as an input setting being changed can cause a call to fail and the system to be deemed unreliable.


Integrating all system components also provides enhanced manageability, allowing systems to report issues for any system component that might cause call failures. Considering early Telepresence systems were primarily used by CXO-level executives, it was imperative that any system failure be identified as quickly as possible. As Telepresence systems have moved into the mainstream, this manageability has proven invaluable.


Bandwidth Requirements
Network requirements for video conferencing and Telepresence are often mis-stated. How many times have you heard, “Telepresence requires a lot more bandwidth than video conferencing”? A high-definition video conferencing system requires the same, or in some cases more, bandwidth than a Cisco TelePresence system, running the same video resolution, to provide a comparable image quality. Cisco TelePresence systems have implemented advanced standards-based compression algorithms, lowering overall bandwidth consumption. These advanced compression algorithms have allowed Cisco TelePresence systems to provide 1080p video resolution at, close to, the same bandwidth consumption of video conferencing systems running 720p video resolution.


Most video conferencing systems enable lower resolutions that require much less bandwidth; however, video conferencing systems running at 720p resolution consume between 2 Mbps to 4 Mbps, whereas single screen Cisco TelePresence systems running at the same resolution only require 1.5 Mbps to 3 Mbps. Remember that some TelePresence systems have three video displays. Comparing the network requirements of a single-screen video conferencing system to a multiscreen TelePresence system is not comparing apples-to-apples. Video conferencing systems should be compared to single screen TelePresence systems.